The Amount and Speed of Discounting1
نویسندگان
چکیده
This paper introduces the concepts of amount and speed of a discounting procedure. Exponential discounting sequesters both concepts into a single parameter that needs to be disaggregated in order to characterize nonconstant rate procedures. The inverse of the present value of a unit stream of benefits provides a natural measure of the amount a procedure discounts the future. We propose geometrical and time horizon based measures of how rapidly a discounting procedure acquires its ultimate present value, and we prove these to be the same. This provides an unambiguous measure of the speed of discounting, a measure whose values lie between 0 (slow) and 2 (fast). Exponential discounting has a speed of 1. A commonly proposed approach to aggregating individual discounting procedures into a social one averages the individual discount functions. We point to serious shortcoming with this approach and propose an alternative that, for logarithmic utility, is market based and for which the amount and time horizon of the social procedure are the averages of the amounts and time horizons of the individual procedures. We further show that the social procedure will in general be slower than the average of the speeds of the individual procedures. We then characterize three families of discounting procedures in terms of their discount functions, their discount rate functions, their amounts, their speeds and their time horizons. A one parameter hyperbolic discounting procedure, d(t) = (1 + rt)−2, has amount r and speed 0, and we argue that this zero-speed hyperbolic is well suited for social project evaluation. JEL codes: D51, D90, H43 and Q51
منابع مشابه
Low-speed impact behavior of two-layer similar and dissimilar metal laminate structures
Mechanical behavior of two-layer metal laminate structures under low-speed impact loading was investigated experimentally and numerically. The experimental results were just used for validation of numerical results. Then numerical modeling was used to study the behavior of metal laminates in details. The mechanical behavior of the metal laminate structures under impact loading was found to be d...
متن کاملEffect of rotational speed in friction stir welding on the material transfer mechanism in commercial pure aluminum
Friction stir welding (FSW) is an economic and high quality technique at aluminum welding and joining methods. The most important factor in the soundness of this type of welding, is the mechanism of material transfer in each tool rotation. The materials transfer during the welding process involves horizontal and vertical movement that caused by extrusion process and forging force (the tilt angl...
متن کاملEffect of rotational speed in friction stir welding on the material transfer mechanism in commercial pure aluminum
Friction stir welding (FSW) is an economic and high quality technique at aluminum welding and joining methods. The most important factor in the soundness of this type of welding, is the mechanism of material transfer in each tool rotation. The materials transfer during the welding process involves horizontal and vertical movement that caused by extrusion process and forging force (the tilt angl...
متن کاملInfluence of rotational speed on the development of microstructure in a friction stir welded 304 austenitic stainless steel
Friction stir welding was conducted on AISI 304 austenitic stainless steel sheet with dimensions of 100 mm × 100 mm × 2 mm. The FSW was performed at a welding speed of 150 mm/min and rotational speeds of 400 and 800 rpm. The results showed that high frequency of low angle grain boundaries (LAGBs) were formed through dynamic recovery in the thermo-mechanically affected zone (TMAZ). Higher amoun...
متن کاملInfluence of rotational speed on the development of microstructure in a friction stir welded 304 austenitic stainless steel
Friction stir welding was conducted on AISI 304 austenitic stainless steel sheet with dimensions of 100 mm × 100 mm × 2 mm. The FSW was performed at a welding speed of 150 mm/min and rotational speeds of 400 and 800 rpm. The results showed that high frequency of low angle grain boundaries (LAGBs) were formed through dynamic recovery in the thermo-mechanically affected zone (TMAZ). Higher amoun...
متن کامل